Tissue Microarrays: Testing The Limits Of Paraffin Embedded Tissue

Stephen M. Hewitt, M.D., Ph.D.
Tissue Array Research Program
LP, CCR, NCI, NIH

What Is A Tissue Array?

- A Block Of Samples
 From Hundreds Of
 Blocks
 - Multiple Samples
 - Paraffin Embedded *Or*Frozen Tissue
 - Arranged In AnOrganized Fashion
- Platform For High-Throughput Pathology

What Is A Tissue Array?

- A Protein Array
 With Retained
 Histomorphology
 - Cell Type Localization
 - Cell TypeQuantification
 - Subcellular Localization
- Platform For High-Throughput Proteomics

Uses Of Tissue Microarrays

- Immunohistochemistry
- In Situ Hybridization
- Other

4%

1%

Immunohistochemistry

Strengths

- Histomorphology
- Cytomorphology
- Simple
- Robust
- In The Clinic
 - No Specialized Equipment
 - Relatively Cheap

Weaknesses

- Quantitation
- Standards
- FFPE Tissue

Solutions

- Standards
 - Tissue Collection
 - Assay Performance
- Image Analysis

Quality Is Everything

- Quality Remains
 Subjective
- Tissue Quality
 - Histology
 - Proteins
 - Nucleic Acids
- Clinical Data
 - Complete
 - Detailed

Multifaceted Role Of TMAs In Translational Research

CMAs

XMAs

TMAs

Multiple Cohorts

TMAs - Tissue Microarrays

- Validate Data From Other Platforms
- Describe Expression Patterns
- Pathway Analysis
- Biomarker Development
- Model Systems Animal Models
 - Dog Comparative Array

Ezrin

Challenges In The Construction Of A TMA

- Identifying Adequate/Appropriate Material
- Negotiating MTA/IRB Approval
- Specimens Present Special Challenges
 - Biopsy & Small Specimens Are Hard To Array
 - Prior Use Of Material For Research
- Diversity Of Specimen Sources
 - Regional Differences In Diagnosis & Treatment
 - Differences In Specimen Handling
- Informatics
- Managing Expectations
 - Pathologist Vs Scientist

Slide Oxidation

Same Core Of Two Different Slides Of The Same TMA Cut 6 Months Apart Stained At The Same Time For Progesterone Receptor

Slide Oxidation On Three Different Common Markers

- Mechanism Of Oxidation Is Uncertain
- Tissue Handling & Processing Impacts Risk Of Oxidation
- Means Of Preventing Oxidation Are Unresolved
- Impact Of Oxidation Is Variable

Uses Of Cores Obtained From Tissue Blocks

- Nucleic Acids
 - Expression Microarrays
 - CGH
 - LOH
- Proteins
 - Protein Arrays
 - Mass Spectroscopy

- RNA
 - 125 nt Modal
 - RT-PCR Up To 300 nt
 - 15% Of Blocks Unusable
- DNA
 - 300 bp Easy
 - Fragments Upto 1.5 kbFeasible
- Protein
 - Work In Progress

Frozen Vs FFPE Derived RNA

- Quantity Is Not As Decreased As Anticipated
- Quality Is Significantly Impacted

Equal Starting Material Mass Evaluation

Quantitative RNA Recovery

Time of incubation

RNA Recovery By Method

Tissue Preservation & Processing

Uncharacterized

- Warm Ischemia Time
- Poor Fixation
 - Inadequate Volume
 - Inadequate Time
- Poor Processing
 - Inadequate Dehydration
- Paraffin Quality
 - Hard Paraffins
 - Contaminants

Unknown

- Metabolic Effects
- Impact Of Buffers
 - What Is The Buffer?
- Alternative Processing
 - Microwave
 - Reagent Substitutions
- Storage
 - Blocks
 - Slides

The Challenges Of Tissue

Finding Tissue Permission To Obtain Tissue **Preserving Tissue** Storing Tissue Reducing Tissue To A Reagent Performing Assays On Tissue Interpretation Of Results

TMAs & Translation Research

- High-Throughput Pathology Is Essential
- Correlation With Outcome Essential
 - Requires Follow-Up
- Greater Attention To Quality In The Collection Of Tissue

Forward Planning For The Collection
 Of Tissue In Clinical Trial Settings